JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biomechanical effects of calcar screws and bone block augmentation on medial support in locked plating of proximal humeral fractures.

BACKGROUND: The objective of this study was to investigate the biomechanical effects of medial fracture gap augmentation in locked plating of an unstable 2-part proximal humeral fracture with calcar screws and insertion of a corticocancellous bone block. Furthermore the mechanical behavior of dynamic locking screws in the non-parallel arrangement of a proximal humeral plate was of interest.

METHODS: Thirty-two fresh frozen humeri were randomized in four equal groups. An unstable 2-part fracture was fixed by locked plating in all specimens. The basic screw setup was supplemented by additional calcar screws in one group. Humeral head screws were replaced by dynamic locking screws in a second group. The third group featured an additional corticocancellous femoral head allograft. Assessment of stiffness was followed by cyclic loading and load to failure tests. Resulting stiffness, fracture gap deflection and ultimate load were compared utilizing Bonferroni corrected t-test for independent samples.

FINDINGS: The mechanical effect of additional calcar screws was non-significant as compared to the basic screw configuration whereas bone block insertion significantly increased construct stiffness and failure load. The use of dynamic locking screws did not significantly reduce construct stiffness when compared to conventional locking screws.

INTERPRETATION: Additional calcar screws alone did not improve the initial biomechanical properties of an unstable 2-part proximal humeral fracture model. However bone block augmentation appeared to be a reliable alternative of additional bony support by raising stiffness and failure load. Dynamic locking screws did not show their expected dynamic component when used in a non-parallel arrangement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app