Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Suture forces in undersized mitral annuloplasty: novel device and measurements.

PURPOSE: To demonstrate the first use of a novel technology for quantifying suture forces on annuloplasty rings to better understand the mechanisms of ring dehiscence.

DESCRIPTION: Force transducers were developed, attached to a size 24 Physio ring, and implanted in the mitral annulus of an ovine animal. Ring suture forces were measured after implantation and for cardiac cycles reaching peak left ventricular pressures (LVP) of 100, 125, and 150 mm Hg.

EVALUATION: After implantation of the undersized ring to the flaccid annulus, the mean suture force was 2.0±0.6 N. During cyclic contraction, the anterior ring suture forces were greater than the posterior ring suture forces at peak LVPs of 100 mm Hg (4.9±2.0 N vs 2.1±1.1 N), 125 mm Hg (5.4±2.3 N vs 2.3±1.2 N), and 150 mm Hg (5.7±2.4 N vs 2.4±1.1 N). The largest force was 7.4 N at 150 mm Hg.

CONCLUSIONS: The preliminary results demonstrate trends in annuloplasty suture forces and their variation with location and LVP. Future studies will significantly contribute to clinical knowledge by elucidating the mechanisms of ring dehiscence while improving annuloplasty ring design and surgical repair techniques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app