JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A combined study of GSK3β polymorphisms and brain network topological metrics in major depressive disorder.

Psychiatry Research 2014 September 31
GSK3β genotypes may interact with major depressive disorder (MDD) and may have a role in determining regional gray matter volume differences from healthy comparison subjects. However, any associations of GSK3β genotypes with MDD related to abnormal functional brain activity have yet to be elucidated. In the present study, resting state functional brain networks were constructed by thresholding partial correlation matrices of 90 regions. Differences in the network features of GSK3β-rs6438552 genotypes were tested, and a 2×2 analysis of variance was performed to identify the main effects of genotypes, disease status, and their interactions in MDD. Compared with CC carriers, T+ carriers with MDD showed increased nodal centralities in many brain regions-mainly the limbic system, thalamus and parts of the parietal, temporal, occipital, and frontal regions. Decreased nodal centralities predominantly occurred in the sensorimotor area and parts of the frontal, occipital, and temporal lobes. Significant interactions between genotypes and disease status were found in the left thalamus, left superior occipital gyrus, and left inferior parietal lobe. Only altered nodal centrality in the left angular gyrus was negatively correlated with scores on the Hamilton Depression Rating Scale. Our results suggest the GSK3β genotypic effect of rs6438552 and its interaction with disease status may contribute to the altered topological organization of resting state functional brain networks in MDD patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app