JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
REVIEW
Add like
Add dislike
Add to saved papers

Incretins: their physiology and application in the treatment of diabetes mellitus.

Therapies targeting the action of incretin hormones have been under close scrutiny in recent years. The incretin effect has been defined as postprandial enhancement of insulin secretion by gut-derived factors. Likewise, incretin mimetics and incretin effect amplifiers are the two different incretin-based treatment strategies developed for the treatment of diabetes. Although, incretin mimetics produce effects very similar to those of natural incretin hormones, incretin effect amplifiers act by inhibiting dipeptidyl peptidase-4 (DPP-4) enzyme to increase plasma concentration of incretins and their biologic effects. Because glucagon-like peptide-1 (GLP-1) is an incretin hormone with various anti-diabetic actions including stimulation of glucose-induced insulin secretion, inhibition of glucagon secretion, hepatic glucose production and gastric emptying, it has been evaluated as a novel therapeutic agent for the treatment of type 2 diabetes mellitus (T2DM). GLP-1 also manifests trophic effects on pancreas such as pancreatic beta cell growth and differentiation. Because DPP-4 is the enzyme responsible for the inactivation of GLP-1, DPP-4 inhibition represents another potential strategy to increase plasma concentration of GLP-1 to enhance the incretin effect. Thus, anti-diabetic properties of these two classes of drugs have stimulated substantial clinical interest in the potential of incretin-based therapeutic agents as a means to control glucose homeostasis in T2DM patients. Despite this fact, clinical use of GLP-1 mimetics and DPP-4 inhibitors have raised substantial concerns owing to possible side effects of the treatments involving increased risk for pancreatitis, and C-cell adenoma/carcinoma. Thus, controversial issues in incretin-based therapies under development are reviewed and discussed in this manuscript.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app