Add like
Add dislike
Add to saved papers

Hemodynamic quantification in brain arteriovenous malformations with time-resolved spin-labeled magnetic resonance angiography.

BACKGROUND AND PURPOSE: Unenhanced time-resolved spin-labeled magnetic resonance angiography enables hemodynamic quantification in arteriovenous malformations (AVMs). Our purpose was to identify quantitative parameters that discriminate among different AVM components and to relate hemodynamic patterns with rupture risk.

METHODS: Sixteen patients presenting with AVMs (7 women, 9 men; mean age 37.1±15.9 years) were assigned to the high rupture risk or low rupture risk group according to anatomic AVM characteristics and rupture history. High temporal resolution (<70 ms) unenhanced time-resolved spin-labeled magnetic resonance angiography was performed on a 3-T MR system. After dedicated image processing, hemodynamic quantitative parameters were computed. T tests were used to compare quantitative parameters among AVM components, between the high rupture risk and low rupture risk groups, and between the hemorrhagic and nonhemorrhagic groups.

RESULTS: Among the quantitative parameters, time-to-peak (P<0.001) and maximum outflow gradient (P=0.01) allowed discriminating various intranidal flow patterns with significantly different values between feeding arteries and draining veins. With 9 AVMs classified into the high rupture risk group (whose 6 were hemorrhagic) and 7 into the low rupture risk group, the observed venous-to-arterial time-to-peak ratio was significantly lower in the high rupture risk (P=0.003) and hemorrhagic (P=0.001) groups.

CONCLUSIONS: Unenhanced time-resolved spin-labeled magnetic resonance angiography allows AVM-specific combined anatomic and quantitative analysis of AVM hemodynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app