JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Horseradish peroxidase enzyme immobilized graphene quantum dots as electrochemical biosensors.

Green colour emitting graphene quantum dots (GQDs) are prepared by a simple acid reflux reaction of graphene oxide (GO) produced using a modified Hummer's method. Structural and morphological characterizations of such GQDs are performed using spectroscopic (FTIR, UV-vis and photoluminescence) and microscopic (transmission electron microscopy) techniques. These studies reveal the formation of stable, uniform spherical particles of GQDs which emit a green colour and possess surface functional moieties such as epoxide, hydroxyl (-OH) and carboxyl (-COOH) groups. Further, the possibility of immobilizing biomolecules on GQDs using these surface active functional groups is explored. As an example, an enzyme namely horseradish peroxidase (HRP) is shown to be anchored on these GQDs using a coupling reaction between an acid and amine leading to the formation of a peptide amide bond. Enzymatic activity of HRP is investigated by simply drop-casting HRP-immobilized GQDs onto a glassy carbon electrode. Electrochemical studies clearly reveal the formation of a well-defined redox peak and the dependence of redox peak current on scan rate suggests that the HRP enzyme is anchored onto the electrode, surface confined and exhibits a direct electron transfer process that is predominantly controlled by a diffusion process. These HRP-functionalized GQDs are used as a sensing platform for hydrogen peroxide detection. This particular electrochemical biosensor shows the sensitivity values of 0.905 and 7.057 μA/mM and detection limits of ~530 nM and 2.16 μM along with a fast response time of ~2-3 s.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app