High-intensity intermittent training in hypoxia: a double-blinded, placebo-controlled field study in youth football players

Franck Brocherie, Olivier Girard, Raphael Faiss, Grégoire P Millet
Journal of Strength and Conditioning Research 2015, 29 (1): 226-37
This study examined the effects of 5 weeks (∼60 minutes per training, 2 d·wk) of run-based high-intensity repeated-sprint ability (RSA) and explosive strength/agility/sprint training in either normobaric hypoxia repeated sprints in hypoxia (RSH; inspired oxygen fraction [FIO2] = 14.3%) or repeated sprints in normoxia (RSN; FIO2 = 21.0%) on physical performance in 16 highly trained, under-18 male footballers. For both RSH (n = 8) and RSN (n = 8) groups, lower-limb explosive power, sprinting (10-40 m) times, maximal aerobic speed, repeated-sprint (10 × 30 m, 30-s rest) and repeated-agility (RA) (6 × 20 m, 30-s rest) abilities were evaluated in normoxia before and after supervised training. Lower-limb explosive power (+6.5 ± 1.9% vs. +5.0 ± 7.6% for RSH and RSN, respectively; both p < 0.001) and performance during maximal sprinting increased (from -6.6 ± 2.2% vs. -4.3 ± 2.6% at 10 m to -1.7 ± 1.7% vs. -1.3 ± 2.3% at 40 m for RSH and RSN, respectively; p values ranging from <0.05 to <0.01) to a similar extent in RSH and RSN. Both groups improved best (-3.0 ± 1.7% vs. -2.3 ± 1.8%; both p ≤ 0.05) and mean (-3.2 ± 1.7%, p < 0.01 vs. -1.9 ± 2.6%, p ≤ 0.05 for RSH and RSN, respectively) repeated-sprint times, whereas sprint decrement did not change. Significant interactions effects (p ≤ 0.05) between condition and time were found for RA ability-related parameters with very likely greater gains (p ≤ 0.05) for RSH than RSN (initial sprint: 4.4 ± 1.9% vs. 2.0 ± 1.7% and cumulated times: 4.3 ± 0.6% vs. 2.4 ± 1.7%). Maximal aerobic speed remained unchanged throughout the protocol. In youth highly trained football players, the addition of 10 repeated-sprint training sessions performed in hypoxia vs. normoxia to their regular football practice over a 5-week in-season period was more efficient at enhancing RA ability (including direction changes), whereas it had no additional effect on improvements in lower-limb explosive power, maximal sprinting, and RSA performance.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"