JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Within-session responses to high-intensity interval training in chronic stroke.

UNLABELLED: Poststroke hemiparesis often leads to a vicious cycle of limited activity, deconditioning, and poor cardiovascular health. Accumulating evidence suggests that exercise intensity is a critical factor determining gains in aerobic capacity, cardiovascular protection, and functional recovery after stroke. High-intensity interval training (HIT) is a strategy that augments exercise intensity using bursts of concentrated effort alternated with recovery periods. However, there was previously no stroke-specific evidence to guide HIT protocol selection.

PURPOSE: This study aimed to compare within-session exercise responses among three different HIT protocols for persons with chronic (>6 months after) stroke.

METHODS: Nineteen ambulatory persons with chronic stroke performed three different 1-d HIT sessions in a randomized order, approximately 1 wk apart. HIT involved repeated 30-s bursts of treadmill walking at maximum tolerated speed, alternated with rest periods. The three HIT protocols were different on the basis of the length of the rest periods, as follows: 30 s (P30), 60 s (P60), or 120 s (P120). Exercise tolerance, oxygen uptake (V˙O2), HR, peak treadmill speed, and step count were measured.

RESULTS: P30 achieved the highest mean V˙O2, HR, and step count but with reduced exercise tolerance and lower treadmill speed than P60 or P120 (P30: 70.9% V˙O2peak, 76.1% HR reserve (HRR), 1619 steps, 1.03 m·s(-1); P60: 63.3% V˙O2peak, 63.1% HRR, 1370 steps, 1.13 m·s(-1); P120: 47.5% V˙O2peak, 46.3% HRR, 1091 steps, 1.10 m·s(-1)). P60 achieved treadmill speed and exercise tolerance similar to those in P120, with higher mean V˙O2, HR, and step count.

CONCLUSIONS: For treadmill HIT in chronic stroke, a combination of P30 and P60 may optimize aerobic intensity, treadmill speed, and stepping repetition, potentially leading to greater improvements in aerobic capacity and gait outcomes in future studies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app