Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transcriptional regulation of OCT4 by the ETS transcription factor ESE-1 in NCCIT human embryonic carcinoma cells.

The epithelium-specific ETS transcription factor-1 (ESE-1) is physiologically important in the pathogenesis of various diseases. Recently, OCT4, a transcription factor involved in stem cell pluripotency, has been implicated in tumorigenesis. In this study, we invested the molecular mechanism by which ESE-1 regulates transcription of OCT4 in NCCIT human embryonic carcinoma cells. Real-time PCR analysis revealed that OCT4 levels were high in undifferentiated NCCIT cells but significantly decreased upon retinoic acid-mediated differentiation, concomitant with up-regulation of ESE-1 expression. OCT4 mRNA level rose following shRNA-mediated knockdown of ESE-1, but declined when ESE-1 was overexpressed, suggesting that the expression levels of OCT4 and ESE-1 may be coordinated in an opposite manner. Promoter-reporter assays revealed that induced OCT4 promoter activity in NCCIT cells was significantly down-regulated by ESE-1 overexpression in a dose-dependent manner. The inhibitory effect of ESE-1 on OCT4 promoter activity was relieved by co-expression of an ESE-1 mutant lacking the transactivation domain, but not by mutants lacking other domains. Serial deletion and site-directed mutagenesis of the OCT4 promoter revealed that a potential ETS binding site (EBS) is present in the conserved region 2 (CR2). ESE-1 interacted with the EBS element in CR2 and enrichment of CR2 significantly increased upon RA-mediated differentiation of NCCIT cells, suggesting that this binding is likely to be involved in ESE-1-mediated repression of OCT4 promoter activity upon differentiation. Taken together, the results of this study reveal the molecular details of the mechanism by which the oncogenic factor ESE-1 regulates expression of the stem cell transcription factor OCT4 in pluripotent NCCIT cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app