JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Age-dependent paraoxonase 1 (PON1) activity and LDL oxidation in Wistar rats during their entire lifespan.

Paraoxonase 1 (PON1) is an HDL bound enzyme which plays a key role in the protection of LDL and HDL from oxidation by hydrolyzing activated phospholipids and lipid peroxide products. Oxidative stress plays a crucial role in the development of atherosclerosis by oxidation of LDL. This study was conducted to determine age-dependent changes in plasma PON1 arylesterase activity and LDL oxidation in rats during their entire lifespan. 48 Wistar strain rats were grouped in six different age groups (1, 4, 8, 12, 18, and 24 months). We observe a significant (P < 0.001) age-dependent decrease in plasma PON1 arylesterase activity correlating with increase in susceptibility of LDL oxidation and increase in plasma MDA level concomitantly with a significant (P < 0.001) decrease in plasma radical scavenging activity after 8 months. The reduction of PON1 and free radical scavenging activity with age could have a considerable impact on the increased incidence of atherosclerosis with age. Our observation of a significant decline in PON1 activity which correlates with increased LDL oxidation after 8 months of age is an interesting observation and needs further investigation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app