JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A novel DPP IV-resistant C-terminally extended glucagon analogue exhibits weight-lowering and diabetes-protective effects in high-fat-fed mice mediated through glucagon and GLP-1 receptor activation.

Diabetologia 2014 September
AIMS/HYPOTHESIS: Modification of the structure of glucagon could provide useful compounds for the potential treatment of obesity-related diabetes.

METHODS: This study evaluated N-acetyl-glucagon, (D-Ser(2))glucagon and an analogue of (D-Ser(2))glucagon with the addition of nine amino acids from the C-terminal of exendin(1-39), namely (D-Ser(2))glucagon-exe.

RESULTS: All analogues were resistant to dipeptidyl peptidase IV degradation. N-Acetyl-glucagon lacked acute insulinotropic effects in BRIN BD11 cells, whereas (D-Ser(2))glucagon and (D-Ser(2))glucagon-exe evoked significant (p < 0.001) insulin release. (D-Ser(2))glucagon-exe stimulated cAMP production (p < 0.001) in glucagon- and GLP-1-receptor (GLP-1R)-transfected cells but not in glucose-dependent insulinotropic polypeptide-receptor-transfected cells. In normal mice, N-acetyl-glucagon and (D-Ser(2))glucagon retained glucagon-like effects of increasing (p < 0.001) plasma glucose and insulin levels. (D-Ser(2))glucagon-exe was devoid of hyperglycaemic actions but substantially (p < 0.001) increased plasma insulin levels. (D-Ser(2))glucagon-exe reduced the glycaemic excursion (p < 0.01) and increased the insulin secretory (p < 0.01) response following a glucose challenge 12 h after administration. Studies in GLP-1R knockout mice confirmed involvement of the GLP-1R pathway in the biological actions of (D-Ser(2))glucagon-exe. Twice-daily administration of (D-Ser(2))glucagon-exe to high-fat-fed mice for 28 days significantly (p < 0.05 to p < 0.001) reduced body weight, energy intake and non-fasting glucose levels, as well as increasing insulin concentrations. Glucose tolerance and insulin sensitivity were significantly (p < 0.01) improved and energy expenditure, O2 consumption and locomotor activity were (p < 0.05 to p < 0.001) augmented. The metabolic benefits were accompanied by increases in pancreatic islet number (p < 0.001) and area (p < 0.05), as well as beta cell area (p < 0.05). Beneficial effects were largely retained for 14 days following cessation of treatment.

CONCLUSIONS/INTERPRETATION: This study emphasises the potential of (D-Ser(2))glucagon-exe for the treatment of obesity-related diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app