Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Detection of expressional changes induced by intrauterine growth restriction in the developing rat mammary gland via exploratory pathways analysis.

BACKGROUND: Intrauterine growth restriction (IUGR) is thought to lead to fetal programming that in turn contributes to developmental changes of many organs postnatally. There is evidence that IUGR is a risk factor for the development of metabolic and cardiovascular disease later in life. A higher incidence of breast cancer was also observed after IUGR. This could be due to changes in mammary gland developmental pathways. We sought to characterise IUGR-induced alterations of the complex pathways of mammary development at the level of the transcriptome in a rat model of IUGR, using pathways analysis bioinformatics.

METHODOLOGY/PRINCIPAL FINDINGS: We analysed the mammary glands of Wistar rats with IUGR induced by maternal low protein (LP) diet at the beginning (d21) and the end (d28) of pubertal ductal morphogenesis. Mammary glands of the LP group were smaller in size at d28, however did not show morphologic changes. We identified multiple differentially expressed genes in the mammary gland using Agilent SurePrint arrays at d21 and d28. In silico analysis was carried out using Ingenuity Pathways Analysis. In mammary gland tissue of LP rats at d21 of life a prominent upregulation of WT1 and CDKN1A (p21) expression was observed. Differentially regulated genes were associated with the extracellular regulated kinase (ERK)-1/-2 pathway. Western Blot analysis showed reduced levels of phosphorylated ERK-1/-2 in the mammary glands of the LP group at d21. To identify possible changes in circulating steroid levels, serum LC-Tandem mass-spectrometry was performed. LP rats showed higher serum progesterone levels and an increased corticosterone/dehydrocorticosterone-ratio at d28.

CONCLUSIONS/SIGNIFICANCE: Our data obtained from gene array analysis support the hypothesis that IUGR influences pubertal development of the rat mammary gland. We identified prominent differential regulation of genes and pathways for factors regulating cell cycle and growth. Moreover, we detected new pathways which appear to be programmed by IUGR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app