Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Base-free oxidation of glycerol using titania-supported trimetallic Au–Pd–Pt nanoparticles.

ChemSusChem 2014 May
Base-free selective oxidation of glycerol has been investigated using trimetallic Au–Pd–Pt nanoparticles supported on titania and their corresponding bimetallic catalysts. Catalysts were prepared by the sol-immobilization method and characterized by means of TEM, UV/Vis spectroscopy, diffuse reflectance infrared fourier transform spectroscopy, X-ray photoelectron spectroscopy, and microwave plasma–atomic emission spectroscopy. It was found that of the bimetallic catalysts, Pd–Pt/TiO2 was the most active with high selectivity to C3 products. The addition of Au to this catalyst to form the trimetallic Au–Pd–Pt/TiO2, resulted in an increase in activity relative to Pd–Pt/TiO2. The turnover frequency increased from 210 h(−1) with the Pd–Pt/TiO2 catalyst to378 h(−1) for the trimetallic Au–Pd–Pt/TiO2 catalyst with retention of selectivity towards C3 products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app