JOURNAL ARTICLE

Sol-hydrothermal synthesis of inorganic-framework molecularly imprinted TiO2/SiO2 nanocomposite and its preferential photocatalytic degradation towards target contaminant

Fang Deng, Yin Liu, Xubiao Luo, Shaolin Wu, Shenglian Luo, Chaktong Au, Ruoxi Qi
Journal of Hazardous Materials 2014 August 15, 278: 108-15
24953942
Inorganic-framework molecularly imprinted TiO2/SiO2 nanocomposite (MIP-TiO2/SiO2) was successfully prepared by sol-hydrothermal method using 4-nitrophenol as template. The morphology, structure, optical property, zeta-potential and photocurrent of MIP-TiO2/SiO2 were characterized. The adsorption performance and photocatalytic selectivity were also studied. MIP-TiO2/SiO2 shows higher adsorption capacity and selectivity than the non-imprinted TiO2/SiO2 (NIP-TiO2/SiO2). Kinetics results show that the adsorption equilibrium of 4-nitrophenol on MIP-TiO2/SiO2 is established within 20 min, and the adsorption process obeys the pseudo-second-order model. Moreover, MIP-TiO2/SiO2 can completely degrade 4-nitrophenol within 30 min, while NIP-TiO2/SiO2 takes 110 min. It was found that the MIP-TiO2/SiO2 photocatalyst shows molecular recognition ability, leading to selective adsorption and molecular recognitive photocatalytic degradation of 4-nitrophenol. Furthermore, because of its inorganic framework, MIP-TiO2/SiO2 shows excellent reusability.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24953942
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"