COMPARATIVE STUDY
JOURNAL ARTICLE

The effect of a bacterial contamination on the formation of capsular contracture with polyurethane breast implants in comparison with textured silicone implants: an animal study

Philipp A Bergmann, Georgious Tamouridis, Jörn A Lohmeyer, Karl L Mauss, Benedikt Becker, Johannes Knobloch, Peter Mailänder, Frank Siemers
Journal of Plastic, Reconstructive & Aesthetic Surgery: JPRAS 2014, 67 (10): 1364-70
24953446

INTRODUCTION: One of the most common complications following breast augmentation is capsular contracture. The subclinical infection of the implant is often considered to be one of the main risk factors. It is believed that polyurethane (PU) implants, because of their larger foam-like surface, have lower capsular contracture rates due to better tissue integration. It remains unclear if bacterial contamination and biofilm formation result in higher capsular contracture rates under the condition of the increased surface of PU implants compared to textured silicone-gel implants. The effect of this bacterial contamination was examined in an animal-based study.

METHODS: A total of 80 mini implants (40 textured silicone-gel implants and 40 PU implants) were implanted in the dorsum of female Wistar rats. In each group, 20 implants were inoculated before implantation with a standard amount of Staphylococcus epidermidis. Capsules and implants were explanted after 60 days, followed by double-blind histological, immunohistochemical, and microbiological examinations.

RESULTS: Macroscopic separation of the total capsule in the textured implant group was possible whereas the growth of surrounding tissue into the foam structure of PU implants made separation in that group difficult. After contamination, a thicker capsule could be observed in both groups without significant differences. Histologically, capsules around PU implants showed significantly lower expression of parallel myofibrils. We were able to describe a significant higher infiltration with inflammatory cells in capsules around PU implants both with and without contamination. Microbiological investigations revealed positive growth of S. epidermidis around one PU implant without related signs of capsular contracture.

DISCUSSION: This study demonstrates that aside from the surface of silicone implants, bacterial contamination has major impact on the architecture of capsule formation. In our study, we were able to demonstrate that bacterial contamination leads to a thicker capsule and an increased tissue reaction with a higher amount of inflammatory cells. However, a resulting bacterial infection was only demonstrated in one case and had an insignificant influence on capsule architecture. The observed inflammatory reaction around PU implants was observed as a nonbacterial, granulomatose foreign body reaction.

EBM RATING: Level I: Evidence obtained from at least one properly designed randomized controlled trial.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24953446
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"