JOURNAL ARTICLE

Mutations in the chikungunya virus non-structural proteins cause resistance to favipiravir (T-705), a broad-spectrum antiviral

Leen Delang, Nidya Segura Guerrero, Ali Tas, Gilles Quérat, Boris Pastorino, Mathy Froeyen, Kai Dallmeier, Dirk Jochmans, Piet Herdewijn, Felio Bello, Eric J Snijder, Xavier de Lamballerie, Byron Martina, Johan Neyts, Martijn J van Hemert, Pieter Leyssen
Journal of Antimicrobial Chemotherapy 2014, 69 (10): 2770-84
24951535

OBJECTIVES: T-705, also known as favipiravir, is a small-molecule inhibitor that is currently in clinical development for the treatment of influenza virus infections. This molecule also inhibits the replication of a broad spectrum of other RNA viruses. The objective of this study was to investigate the antiviral effect of favipiravir on chikungunya virus (CHIKV) replication and to contribute to unravelling the molecular mechanism of action against this virus.

METHODS: The anti-CHIKV effect of favipiravir was examined in cell culture and in a mouse model of lethal infection. A five-step protocol was used to select for CHIKV variants with reduced susceptibility to favipiravir. The resistant phenotype was confirmed in cell culture and the whole genome was sequenced. The identified mutations were reverse-engineered into an infectious clone to confirm their impact on the antiviral efficacy of favipiravir.

RESULTS: Favipiravir inhibits the replication of laboratory strains and clinical isolates of CHIKV, as well as of a panel of other alphaviruses. Several favipiravir-resistant CHIKV variants were independently selected and all of them in particular acquired the unique K291R mutation in the RNA-dependent RNA polymerase (RdRp). Reverse-engineering of this K291R mutation into an infectious clone of CHIKV confirmed the link between the mutant genotype and the resistant phenotype. Interestingly, this particular lysine is also highly conserved in the RdRp of positive-stranded RNA viruses in general.

CONCLUSIONS: This study provides an important insight into the precise molecular mechanism by which favipiravir exerts its antiviral activity against (alpha)viruses, which may be of help in designing other potent broad-spectrum antivirals.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24951535
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"