JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biomechanical analysis of an interbody cage with three integrated cancellous lag screws in a two-level cervical spine fusion construct: an in vitro study.

BACKGROUND CONTEXT: Despite an increase in the clinical use of no-profile anchored interbody cages (AIC) for anterior cervical discectomy and fusion (ACDF) procedures, there is little published biomechanical data describing its stabilizing effect relative to the traditional anterior plating technique over two contiguous levels.

PURPOSE: To biomechanically compare the acute stability conferred by a stand-alone interbody fusion device with three integrated fixation screws ("anchored cage") with a traditional six-hole rigid anterior plate in a two contiguous levels (C4-C5+C5-C6) fusion construct. We hypothesized that the anchored cage would confer comparable segmental rigidity to the cage and anterior plate construct.

STUDY DESIGN: A biomechanical laboratory study using cadaveric human cervical spines.

METHODS: Seven (n=7) cadaveric human cervical spines (C3-C7) were subjected to quasistatic, pure-moment loading (±1.5 Nm) in flexion-extension (flex/ext), right/left lateral bending (RB/LB), and right/left axial rotation (RR/LR) for the following test conditions: intact; after discectomy and insertion of the AIC at C4-C5 and C5-C6 with anchoring screws engaged; after the removal of the integrated anchoring screws and instrumentation of an anterior locking plate (ALP) over both levels; and cage-only (CO) configuration with screws and anterior plate removed. Intervertebral range of motion (ROM) at the instrumented levels was the primary biomechanical outcome.

RESULTS: Flex/ext, RB/LB, and RR/LR ROMs were significantly reduced (p<.001) over both levels by AIC and ALP constructs relative to the CO construct. Significant reduction in flex/ext motion was achieved with the ALP (6.8±3.7) relative to the AIC (10.2°±4.6°) (p=.041) construct. No significant differences were seen in ROM reductions over the two levels between the AIC and APL groups in lateral bending or axial rotation (p>.826).

CONCLUSIONS: The anchored cage fusion construct conferred similar acute biomechanical stability in lateral bending and axial rotation ROMs relative to rigid anterior plating. We identified a statistically significant reduction (Δ=3.4°, combined over two levels) in sagittal plane ROM conferred by the ALP relative to the AIC construct. Our biomechanical findings may support the clinical use of no-profile integrated interbody devices over two contiguous levels in ACDF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app