Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Adipogenic differentiation potential of rat adipose tissue-derived subpopulations of stromal cells.

Adipose-derived stromal cells (ASCs) are mostly isolated by enzymatic digestion, centrifugation and adherent growth resulting in a very heterogeneous cell population. Therefore, other cell types in the cell culture can comprise the differentiation and proliferation potential of the ASC population. Recent studies indicated that an antibody-aided isolation of distinct ASC subpopulations provides advantages over the conventional method of ASC isolation. The aim of this study was to investigate the adipogenic differentiation potential of CD29-, CD71-, CD73- and CD90-selected ASCs in vitro. The stromal vascular fraction (SVF) was obtained from rat adipose tissue by enzymatic digestion and centrifugation. Subsequently, CD29(+)-, CD71(+)-, CD73(+)- and CD90(+) cells were isolated by magnetic activated cell sorting (MACS), seeded into culture plates and differentiated into the adipogenic lineage. ASCs isolated by adherent growth only served as controls. Adipogenic differentiation was assessed by Oil Red O staining and quantification of the adiponectin and leptin concentrations in the cell culture supernatants. Statistical analysis was carried out using one-way analysis of variance (ANOVA) followed by the Scheffe's post hoc procedure. The results showed that different subpopulations with different adipogenic differentiation potentials can be isolated by the MACS procedure. The highest adipogenic differentiation potential was determined in the CD29-selected ASC population followed by the unsorted ASC population. The CD71-, CD73- and CD90-selected cells exhibited significantly the lowest adipogenic differentiation potential. In conclusion, the CD29-selected ASCs and the unsorted ASCs exhibited a similar adipogenic differentiation potential. Therefore, we do not see a clear advantage in the application of an anti-CD29-based isolation of ASCs over the conventional technique using adherent growth. However, the research on isolation/purification methods of adipogenic ASCs should continue in order to make this stem cell source even more attractive for future adipose tissue engineering applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app