Journal Article
Randomized Controlled Trial
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of the effects of the vasopressin V2 receptor on sweating, fluid balance, and performance during exercise.

A regulatory effect of arginine vasopressin (AVP) on sweat water conservation has been hypothesized but not definitively evaluated. AVP-mediated insertion of sweat and salivary gland aquaporin-5 (AQP5) water channels through activation of the vasopressin type 2 receptor (V2R) remains an attractive, yet unexplored, mechanism that could result in a more concentrated sweat with resultant decreased water loss. Ten runners participated in a double-blind randomized control treadmill trial under three separate pharmacological conditions: a placebo, V2R agonist (0.2 mg desmopressin), or V2R antagonist (30 mg tolvaptan). After a familiarization trial, runners ran for 60 min at 60% of peak speed followed by a performance trial to volitional exhaustion. Outcome variables were collected at three exercise time points: baseline, after the steady-state run, and after the performance run. Body weight losses were <2% across all three trials. Significant pharmacological condition effects were noted for urine osmolality [F = 84.98; P < 0.0001] and urine sodium concentration ([Na(+)]) [F = 38.9; P < 0.0001], which verified both pharmacological activation and inhibition of the V2R at the kidney collecting duct. Plasma osmolality and [Na(+)] demonstrated significant exercise (F = 26.0 and F = 11.1; P < 0.0001) and condition (F = 5.1 and F = 3.8; P < 0.05) effects (osmolality and [Na(+)], respectively). No significant exercise or condition effects were noted for either sweat or salivary [Na(+)]. Significant exercise effects were noted for plasma [AVP] (F = 22.3; P < 0.0001), peak core temperature (F = 103.3; P < 0.0001), percent body weight change (F = 6.3; P = 0.02), plasma volume change (F = 21.8; P < 0.0001), and thirst rating (F = 78.2; P < 0.0001). Performance time was not altered between conditions (P = 0.80). In summary, AVP acting at V2R does not appear to regulate water losses from body fluids other than renal excretion during exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app