Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Early neuronal loss and axonal/presynaptic damage is associated with accelerated amyloid-β accumulation in AβPP/PS1 Alzheimer's disease mice subiculum.

The progressive cognitive decline leading to dementia in Alzheimer's disease (AD) patients is the consequence of a severe loss of synapses and neurons affecting particular cell subpopulations in selected brain areas, with the subiculum being one of the earliest regions displaying severe atrophy and pathology. The lack of significant neuronal loss in most AD models is, in fact, the major shortcoming for the preclinical evaluation of drugs that could have greater potential in patients to alleviate or prevent this disease. In this study, using immunohistochemical and stereological approaches, we have analyzed the histopathological events in the subiculum of AβPP751SwedLondon/PS1M146L mice, a transgenic model that displays neuronal vulnerability at early ages in hippocampus and entorhinal cortex. Our results indicate that the subiculum is the earliest affected region in the hippocampus, showing a selective early loss of both principal neurons (28%) and SOM-positive interneurons (69%). In addition, our data demonstrate the existence of an early axonal and synaptic pathology, which may represent the beginning of the synaptic disruption and loss. These neurodegenerative processes occur in parallel, and closely related, with the onset and accelerated progression of the extracellular amyloid-β deposition, thus suggesting plaques as major contributors of neuronal/axonal damage. Data reported here indicate that this AD model displays a selective AD-like neurodegenerative phenotype in highly vulnerable regions, including the subiculum, and therefore can be a very useful model for testing the therapeutic ability of potential compounds to protect neurons and ameliorate disease symptoms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app