Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Tanshinone IIA induces apoptosis in fibroblast-like synoviocytes in rheumatoid arthritis via blockade of the cell cycle in the G2/M phase and a mitochondrial pathway.

Tanshinone IIA (Tan IIA), a phytochemical derived from the roots of Salvia miltiorrhiza BUNGE, has been documented with anti-tumor, pro-apoptotic, and anti-inflammatory activities. Salvia miltiorrhiza has long been used to treat rheumatoid arthritis (RA). Apoptosis induction of RA-fibroblast-like synoviocytes (FLS) was suggested to be a potential therapeutic approach for RA. The aim of this study was to investigate whether Tan IIA promotes apoptosis in RA-affected FLS. In this study, the viability of an immortalized FLS cell line derived from RA patients was assessed by 3-(4,5-dimethylthiazol-2-yl)-5,3-carboxymethoxyphenyl-2,4-sulfophenyl-2H-tetrazolium (MTS) assay after Tan IIA treatment. Apoptosis was measured by terminal deoxyuridine triphosphate (dUTP) nick-end labeling (TUNEL) assay and flow cytometry. Cell cycle was evaluated by flow cytometry. The expressions of mitochondrial apoptosis-related molecules, including Bcl-2, Bax, mitochondrial cytochrome c (Cyt-c), cytosolic Cyt-c, apoptotic protease activating factor 1 (Apaf-1), procaspase-9, procaspase-3, caspase-9, and caspase-3 were determined by Western blotting. Our data demonstrate that Tan IIA induced apoptosis of RA-FLS, blocked the cell cycle in the G2/M phase, and regulated the protein expression of Bcl-2, Bax, and Apaf-1, the release of mitochondrial Cyt-c, and the activation of caspase-9 and caspase-3. The results support the conclusion Tan IIA treatment likely induces apoptosis of RA-FLS through blockade of the cell cycle in the G2/M phase and a mitochondrial pathway. These data suggest that Tan IIA may have therapeutic potential for RA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app