JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Potential impact of dipeptidyl peptidase-4 inhibitors on cardiovascular pathophysiology in type 2 diabetes mellitus.

Cardiovascular (CV) disease remains the major cause of mortality and morbidity in patients with type 2 diabetes mellitus (T2DM). The pathogenesis of CV disease in T2DM is complex and multifactorial, and includes abnormalities in endothelial cells, vascular smooth muscle cells, myocardium, platelets, and the coagulation cascade. Dipeptidyl peptidase-4 (DPP-4) inhibitors are a newer class of agents that act by potentiating the action of glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide. This review summarizes CV disease pathophysiology in T2DM and the potential effect of DPP-4 inhibitors on CV risk in patients with T2DM. Preclinical and small observational studies and post hoc analyses of clinical trial data suggest that DPP-4 inhibitors may have beneficial CV effects. Some effects of DPP-4 inhibitors are GLP-1 dependent, whereas others may be due to GLP-1-independent actions of DPP-4 inhibitors. Analyses of major adverse CV events occurring during clinical development of DPP-4 inhibitors found no increased risk of CV events or mortality and even a potential reduction in CV events. Two large CV outcome trials have been completed and report that saxagliptin and alogliptin did not increase or decrease adverse CV outcomes in patients with T2DM and CV disease or at high risk for adverse CV events. More patients in the saxagliptin group than in the placebo group were hospitalized for heart failure, and there was a similar numerically increased risk of hospitalization for heart failure with alogliptin; however, the risk was not significantly greater compared with placebo. Dipeptidyl peptidase-4 inhibitors may affect some of the pathologic processes involved in the increased CV risk inherent in T2DM.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app