Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

An novel inhibitor of TGF-β type I receptor, IN-1130, blocks breast cancer lung metastasis through inhibition of epithelial-mesenchymal transition.

Cancer Letters 2014 August 29
TGF-β signaling plays an important role in breast cancer progression and metastasis. Epithelial-mesenchymal transition (EMT) is an important step in the progression of solid tumors to metastatic disease. We previously reported that IN-1130, a novel transforming growth factor-β type I receptor kinase (ALK5) inhibitor, suppressed renal fibrosis in obstructive nephropathy (Moon et al., 2006). Here, we show that IN-1130 suppressed EMT and the lung metastasis of mammary tumors in mouse models. Treating human and mouse cell lines with IN-1130 inhibited TGF-β-mediated transcriptional activation, the phosphorylation and nuclear translocation of Smad2, and TGF-β-induced-EMT, which induces morphological changes in epithelial cells. Additionally, we demonstrated that IN-1130 blocked TGF-β-induced 4T1 mammary cancer cell migration and invasion. The TGF-β-mediated increase in matrix metalloproteinase (MMP)-2 and MMP-9 expression was restored by IN-1130 co-treatment with TGF-β in human epithelial cells and in 4T1 cells. Furthermore, we found that lung metastasis from primary breast cancer was inhibited by IN-1130 in both 4T1-xenografted BALB/c mice and MMTV/c-Neu transgenic mice without any change in primary tumor volume. IN-1130 prolonged the life span of tumor-bearing mice. In summary, this study indicated that IN-1130 has therapeutic potential for preventing breast cancer metastasis to the lung.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app