JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Effects of age and long-term endurance training on VO2 kinetics.

PURPOSE: This study examined the effects of age and training status on the pulmonary oxygen uptake (VO2p) kinetics of untrained and chronically trained young, middle-age, and older groups of men.

METHODS: Breath-by-breath VO2p and near-infrared spectroscopy-derived muscle deoxygenation ([HHb]) were monitored continuously in young (20-39 yr) trained (YT, n = 8) and untrained (YuT, n = 8), middle-age (40-59 yr) trained (MT, n = 9) and untrained (MuT, n = 9), and older (60-85 yr) trained (OT, n = 9) and untrained (OuT, n = 8) men. On-transient VO2p and [HHb] responses to cycling exercise at 80% of the estimated lactate threshold (three repeats) were modeled as monoexponential. Data were scaled to a relative percentage of the response (0%-100%), the signals time aligned, and the individual [HHb]-to-VO2p ratio was calculated as the average [HHb]/VO2 during the 20- to 120-s period after exercise onset.

RESULTS: The time constant for the adjustment of phase II pulmonary VO2 (τVO2p) was larger in OuT (42.0 ± 11.3 s) compared with that in YT (17.0 ± 7.5 s), MT (18.1 ± 5.3 s), OT (19.8 ± 5.4 s), YuT (25.7 ± 6.6 s), and MuT (24.4 ± 7.4 s) (P < 0.05). Similarly, the [HHb]/VO2 ratio was larger than 1.0 in OuT (1.30 ± 0.13, P < 0.05) and this value was larger than that observed in YT (1.01 ± 0.07), MT (1.04 ± 0.05), OT (1.04 ± 0.04), YuT (1.05 ± 0.03), and MuT (1.02 ± 0.09) (P < 0.05).

CONCLUSIONS: This study showed that the slower VO2kinetics typically observed in older individuals can be prevented by long-term endurance training interventions. Although the role of O2 delivery relative to peripheral use cannot be elucidated from the current measures, the absence of age-related slowing of VO2 kinetics seems to be partly related to a preservation of the matching of O2 delivery to O2 utilization in chronically trained older individuals, as suggested by the reduction in the [HHb]/VO2 ratio.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app