Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Subject-specific planning of femoroplasty: a combined evolutionary optimization and particle diffusion model approach.

A potential effective treatment for prevention of osteoporotic hip fractures is augmentation of the mechanical properties of the femur by injecting it with agents such as (PMMA) bone cement - femoroplasty. The operation, however, is only in research stage and can benefit substantially from computer planning and optimization. We report the results of computational planning and optimization of the procedure for biomechanical evaluation. An evolutionary optimization method was used to optimally place the cement in finite element (FE) models of seven osteoporotic bone specimens. The optimization, with some inter-specimen variations, suggested that areas close to the cortex in the superior and inferior of the neck and supero-lateral aspect of the greater trochanter will benefit from augmentation. We then used a particle-based model for bone cement diffusion simulation to match the optimized pattern, taking into account the limitations of the actual surgery, including limited volume of injection to prevent thermal necrosis. Simulations showed that the yield load can be significantly increased by more than 30%, using only 9 ml of bone cement. This increase is comparable to previous literature reports where gross filling of the bone was employed instead, using more than 40 ml of cement. These findings, along with the differences in the optimized plans between specimens, emphasize the need for subject-specific models for effective planning of femoral augmentation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app