JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Methylphenidate treatment causes oxidative stress and alters energetic metabolism in an animal model of attention-deficit hyperactivity disorder.

OBJECTIVES: To evaluate oxidative damage through the thiobarbituric acid-reactive species (TBARS) and protein carbonyl groups; antioxidant enzymatic system - superoxide dismutase (SOD) and catalase (CAT); and energetic metabolism in the brain of spontaneously hypertensive adult rats (SHR) after both acute and chronic treatment with methylphenidate hydrochloride (MPH).

METHODS: Adult (60 days old) SHRs were treated during 28 days (chronic treatment), or 1 day (acute treatment). The rats received one i.p. injection per day of either saline or MPH (2 mg/kg). Two hours after the last injection, oxidative damage parameters and energetic metabolism in the cerebellum, prefrontal cortex, hippocampus, striatum and cortex were evaluated.

RESULTS: We observed that both acute and/or chronic treatment increased TBARS and carbonyl groups, and decreased SOD and CAT activities in many of the brain structures evaluated. Regarding the energetic metabolism evaluation, the acute and chronic treatment altered the energetic metabolism in many of the brain structures evaluated.

CONCLUSION: We observed that both acute and chronic use of methylphenidate hydrochloride (MPH) in adult spontaneously hypertensive rats (SHRs) was associated with increased oxidative stress and energetic metabolism alterations. These data also reinforce the importance of the SHR animal model in further studies regarding MPH.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app