JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Adiponectin regulates SR Ca(2+) cycling following ischemia/reperfusion via sphingosine 1-phosphate-CaMKII signaling in mice.

The adipocyte-secreted hormone adiponectin (APN) exerts protective effects on the heart under stress conditions. Recent studies have demonstrated that APN induces a marked Ca(2+) influx in skeletal muscle. However, whether APN modulates [Ca(2+)]i activity, especially [Ca(2+)]i transients in cardiomyocytes, is still unknown. This study was designed to determine whether APN modulates [Ca(2+)]i transients in cardiomyocytes. Adult male wild-type (WT) and APN knockout (APN KO) mice were subjected to myocardial ischemia/reperfusion (I/R, 30min/30min) injury. CaMKII-PLB phosphorylation and SR Ca(2+)-ATPase (SERCA2) activity were downregulated in I/R hearts of WT mice and further decreased in those of APN KO mice. Both the globular domain of APN and full-length APN significantly reversed the decrease in CaMKII-PLB phosphorylation and SERCA2 activity in WT and APN KO mice. Interestingly, compared with WT littermates, single myocytes isolated from APN KO mice had remarkably decreased [Ca(2+)]i transients, cell shortening, and a prolonged Ca(2+) decay rate. Further examination revealed that APN enhances SERCA2 activity via CaMKII-PLB signaling. In in vivo and in vitro experiments, both APN receptor 1/2 and S1P were necessary for the APN-stimulated CaMKII-PLB-SERCA2 activation. In addition, S1P activated CaMKII-PLB signaling in neonatal cardiomyocytes in a dose dependent manner and improved [Ca(2+)]i transients in APN KO myocytes via the S1P receptor (S1PR1/3). Further in vivo experiments revealed that pharmacological inhibition of S1PR1/3 and SERCA2 siRNA suppressed APN-mediated cardioprotection during I/R. These data demonstrate that S1P is a novel regulator of SERCA2 that activates CaMKII-PLB signaling and mediates APN-induced cardioprotection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app