Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Low magnitude high frequency vibration accelerated cartilage degeneration but improved epiphyseal bone formation in anterior cruciate ligament transect induced osteoarthritis rat model.

OBJECTIVES: To evaluate the effects of low-magnitude high-frequency vibration (LMHFV) on degenerated articular cartilage and subchondral bone in anterior cruciate ligament transection (ACLT) induced osteoarthritis (OA) rat model.

METHODS: 6 months old female Sprague-Dawley rats received ACLT on right knee and randomly divided into treatment and control groups. OA developed 12 weeks after surgery. LMHFV (35 Hz, 0.3 g) treatment was given 20 min/day and 5 days/week. After 6, 12 and 18 weeks, six rats of each group were sacrificed at each time point and the right knees were harvested. OA grading score, distal femur cartilage volume (CV), subchondral bone morphology, elastic modulus of cartilage and functional changes between groups were analyzed.

RESULTS: Increased cartilage degradation (higher OA grading score) and worse functional results (lower duty cycle, regular index and higher limb idleness index) were observed after LMHFV treatment (P = 0.011, 0.020, 0.012 and 0.005, respectively). CV increased after LMHFV treatment (P = 0.019). Subchondral bone density increased with OA progress (P < 0.01). Increased BV/TV, Tb.N and decreased Tb.Sp were observed in distal femur epiphysis in LMHFV treatment group (P = 0.006, 0.018 and 0.011, respectively).

CONCLUSION: LMHFV accelerated cartilage degeneration and caused further functional deterioration of OA affected limb in ACLT-induced OA rat model. In contrast, LMHFV promoted bone formation in OA affected distal femur epiphysis, but did not reverse OA progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app