Add like
Add dislike
Add to saved papers

Mutations in SETD2 cause a novel overgrowth condition.

BACKGROUND: Overgrowth conditions are a heterogeneous group of disorders characterised by increased growth and variable features, including macrocephaly, distinctive facial appearance and various degrees of learning difficulties and intellectual disability. Among them, Sotos and Weaver syndromes are clinically well defined and due to heterozygous mutations in NSD1 and EZH2, respectively. NSD1 and EZH2 are both histone-modifying enzymes. These two epigenetic writers catalyse two specific post-translational modifications of histones: methylation of histone 3 lysine 36 (H3K36) and lysine 27 (H3K27). We postulated that mutations in writers of these two chromatin marks could cause overgrowth conditions, resembling Sotos or Weaver syndromes, in patients with no NSD1 or EZH2 abnormalities.

METHODS: We analysed the coding sequences of 14 H3K27 methylation-related genes and eight H3K36 methylation-related genes using a targeted next-generation sequencing approach in three Sotos, 11 'Sotos-like' and two Weaver syndrome patients.

RESULTS: We identified two heterozygous mutations in the SETD2 gene in two patients with 'Sotos-like' syndrome: one missense p.Leu1815Trp de novo mutation in a boy and one nonsense p.Gln274* mutation in an adopted girl. SETD2 is non-redundantly responsible for H3K36 trimethylation. The two probands shared similar clinical features, including postnatal overgrowth, macrocephaly, obesity, speech delay and advanced carpal ossification.

CONCLUSIONS: Our results illustrate the power of targeted next-generation sequencing to identify rare disease-causing variants. We provide a compelling argument for Sotos and Sotos-like syndromes as epigenetic diseases caused by loss-of-function mutations of epigenetic writers of the H3K36 histone mark.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app