CLINICAL TRIAL
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

The combined role of galactose-deficient IgA1 and streptococcal IgA-binding M Protein in inducing IL-6 and C3 secretion from human mesangial cells: implications for IgA nephropathy.

IgA nephropathy (IgAN) is characterized by mesangial cell proliferation and extracellular matrix expansion associated with immune deposits consisting of galactose-deficient polymeric IgA1 and C3. We have previously shown that IgA-binding regions of streptococcal M proteins colocalize with IgA in mesangial immune deposits in patients with IgAN. In the present study, the IgA-binding M4 protein from group A Streptococcus was found to bind to galactose-deficient polymeric IgA1 with higher affinity than to other forms of IgA1, as shown by surface plasmon resonance and solid-phase immunoassay. The M4 protein was demonstrated to bind to mesangial cells not via the IgA-binding region but rather via the C-terminal region, as demonstrated by flow cytometry. IgA1 enhanced binding of M4 to mesangial cells, but not vice versa. Costimulation of human mesangial cells with M4 and galactose-deficient polymeric IgA1 resulted in a significant increase in IL-6 secretion compared with each stimulant alone. Galactose-deficient polymeric IgA1 alone, but not M4, induced C3 secretion from the cells, and costimulation enhanced this effect. Additionally, costimulation enhanced mesangial cell proliferation compared with each stimulant alone. These results indicate that IgA-binding M4 protein binds preferentially to galactose-deficient polymeric IgA1 and that these proteins together induce excessive proinflammatory responses and proliferation of human mesangial cells. Thus, tissue deposition of streptococcal IgA-binding M proteins may contribute to the pathogenesis of IgAN.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app