JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

[Advanced oxidation protein products induce epithelial-to-mesenchymal transition in cultured human proximal tubular epithelial cells via oxidative stress].

OBJECTIVE: To investigate the effects of advanced oxidation protein products (AOPP) on epithelial-to-mesenchymal transition (EMT) in cultured human proximal tubular epithelial cells (HK-2) and explore the mechanism.

METHODS: HK-2 cells treated with 50, 100, 200, and 400 µg/ml AOPP or 50 µg/m bovine serum albumin (BSA) for 24 h, or with 200 µg/ml AOPP for 0.5, 1, 3, 6, 12, and 24 h were examined for the protein expression of α-SMA and E-cadherin. In cells pretreated with diphenyleneiodonium (DPI) or cytoplasmic superoxide dismutase (C-SOD), the effects of 50 µg/ml BSA and 200 µg/ml AOPP were assessed on the expressions of α-SMA and E-cadherin, malondialdehyde (MDA) level, superoxide dismutase (SOD) activity, catalase (CAT) activity, and glutathione peroxidase (GSH-px) activity.

RESULTS: AOPP treatment up-regulated α-SMA expression and down-regulated E-cadherin expression in a dose- and time-dependent fashion. AOPP exposure of the cells resulted in increased MDA level and lowered activities of SOD, CAT and GSH-PX. DPI and C-SOD partially attenuated the effects of AOPP on α-SMA, E-cadherin, MDA, SOD, CAT and GSH-px.

CONCLUSION: AOPP can induce EMT in cultured HK-2 cells via oxidative stress, and this effect can be attenuated by inhibiting the activation of NADPH oxidase and using antioxidants to delay the progression of renal interstitial fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app