JOURNAL ARTICLE

Endothelial nitric oxide synthase-enhancing G-protein coupled receptor antagonist inhibits pulmonary artery hypertension by endothelin-1-dependent and endothelin-1-independent pathways in a monocrotaline model

Chung-Pin Liu, Zen-Kong Dai, Chein-Heng Huang, Jwu-Lai Yeh, Bin-Nan Wu, Jiunn-Ren Wu, Ing-Jun Chen
Kaohsiung Journal of Medical Sciences 2014, 30 (6): 267-78
24835346
This study investigates whether endothelin-1 (ET-1) mediates monocrotaline (MCT)-induced pulmonary artery hypertension (PAH) and right ventricular hypertrophy (RVH), and if so, whether the G-protein coupled receptor antagonist KMUP-1 (7-{2-[4-(2-chlorobenzene)piperazinyl]ethyl}-1,3-dimethylxanthine) inhibits ET-1-mediated PA constriction and the aforementioned pathological changes. In a chronic rat model, intraperitoneal MCT (60 mg/kg) induced PAH and increased PA medial wall thickening and RV/left ventricle + septum weight ratio on Day 21 after MCT injection. Treatment with sublingual KMUP-1 (2.5 mg/kg/day) for 21 days prevented these changes and restored vascular endothelial nitric oxide synthase (eNOS) immunohistochemical staining of lung tissues. Western blotting analysis demonstrated that KMUP-1 enhanced eNOS, soluble guanylate cyclase, and protein kinase G levels, and reduced ET-1 expression and inactivated Rho kinase II (ROCKII) in MCT-treated lung tissue over long-term administration. In MCT-treated rats, KMUP-1 decreased plasma ET-1 on Day 21. KMUP-1 (3.6 mg/kg) maximally appeared at 0.25 hours in the plasma and declined to basal levels within 24 hours after sublingual administration. In isolated PA of MCT-treated rats, compared with control and pretreatment with l-NG-nitroarginine methyl ester (100 μM), KMUP-1 (0.1-100 μM) inhibited ET-1 (0.01 μM)-induced vasoconstriction. Endothelium-denuded PA sustained higher contractility in the presence of KMUP-1. In a 24-hour culture of smooth muscle cells (i.e., PA smooth muscle cells or PASMCs), KMUP-1 (0.1-10 μM) inhibited RhoA- and ET-1-induced RhoA activation. KMUP-1 prevented MCT-induced PAH, PA wall thickening, and RVH by enhancing eNOS and suppressing ET-1/ROCKII expression. In vitro, KMUP-1 inhibited ET-1-induced PA constriction and ET-1-dependent/independent RhoA activation of PASMCs. In summary, KMUP-1 attenuates ET-1-induced/ET-1-mediated PA constriction, and could thus aid in the treatment of PAH caused by MCT.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24835346
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"