JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via G1 arrest and apoptosis triggered by endoplasmic reticulum stress.

Piperine, a piperidine alkaloid present in black pepper, inhibits the growth of cancer cells, although the mechanism of action is not well understood. In this study, we show that piperine (75-150 µM) inhibited the growth of several colon cancer cell lines but had little effect on the growth of normal fibroblasts and epithelial cells. Piperine inhibited HT-29 colon carcinoma cell proliferation by causing G1 phase cell cycle arrest that was associated with decreased expression of cyclins D1 and D3 and their activating partner cyclin-dependent kinases 4 and 6, as well as reduced phosphorylation of the retinoblastoma protein and up-regulation of p21/WAF1 and p27/KIP1 expression. In addition, piperine caused hydroxyl radical production and apoptosis that was partially dependent on the production of reactive oxygen species. Piperine-treated HT-29 cells showed loss of mitochondrial membrane integrity and cleavage of poly (ADP-ribose) polymerase-1, as well as caspase activation and reduced apoptosis in the presence of the pan-caspase inhibitor zVAD-FMK. Increased expression of the endoplasmic reticulum stress-associated proteins inositol-requiring 1α protein, C/EBP homologous protein, and binding immunoglobulin protein, and activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase, as well as decreased phosphorylation of Akt and reduced survivin expression were also observed in piperine-treated HT-29 cells. Furthermore, piperine inhibited colony formation by HT-29 cells, as well as the growth of HT-29 spheroids. Cell cycle arrest and endoplasmic reticulum stress-associated apoptosis following piperine treatment of HT-29 cells provides the first evidence that piperine may be useful in the treatment of colon cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app