JOURNAL ARTICLE

Regulation of contractile signaling and matrix remodeling by T-cadherin in vascular smooth muscle cells: constitutive and insulin-dependent effects

Agne Frismantiene, Dennis Pfaff, Audrey Frachet, Matteo Coen, Manjunath B Joshi, Kseniya Maslova, Marie-Luce Bochaton-Piallat, Paul Erne, Therese J Resink, Maria Philippova
Cellular Signalling 2014, 26 (9): 1897-908
24815187
Expression of GPI-anchored T-cadherin (T-cad) on vascular smooth muscle cells (VSMC) is elevated in vascular disorders such as atherosclerosis and restenosis which are associated with insulin resistance. Functions for T-cad and signal transduction pathway utilization by T-cad in VSMC are unknown. The present study examines the consequences of altered T-cad expression on VSMC for constitutive and insulin-induced Akt/mTOR axis signaling and contractile competence. Using viral vectors rat (WKY and SHR) and human aortic VSMCs were variously transduced with respect to T-cad-overexpression (Tcad+-VSMC) or T-cad-deficiency (shT-VSMC) and compared with their respective control transductants (E-VSMC or shC-VSMC). Tcad+-VSMC exhibited elevated constitutive levels of phosphorylated Akt(ser473), GSK3β(ser9), S6RP(ser235/236) and IRS-1(ser636/639). Total IRS-1 levels were reduced. Contractile machinery was constitutively altered in a manner indicative of reduced intrinsic contractile competence, namely decreased phosphorylation of MYPT1(thr696 or thr853) and MLC20(thr18/ser19), reduced RhoA activity and increased iNOS expression. Tcad+-VSMC-populated collagen lattices exhibited greater compaction which was due to increased collagen fibril packing/reorganization. T-cad+-VSMC exhibited a state of insulin insensitivity as evidenced by attenuation of the ability of insulin to stimulate Akt/mTOR axis signaling, phosphorylation of MLC20 and MYPT1, compaction of free-floating lattices and collagen fibril reorganization in unreleased lattices. The effects of T-cad-deficiency on constitutive characteristics and insulin responsiveness of VSMC were opposite to those of T-cad-overexpression. The study reveals novel cadherin-based modalities to modulate VSMC sensitivity to insulin through Akt/mTOR axis signaling as well as vascular function and tissue architecture through the effects on contractile competence and organization of extracellular matrix.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
24815187
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"