JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Procalcitonin sensitive detection based on graphene-gold nanocomposite film sensor platform and single-walled carbon nanohorns/hollow Pt chains complex as signal tags.

Septicemia is a serious disease that requires early diagnosis, and procalcitonin (PCT) serves as a diagnostic biomarker for this disease. Traditional clinical detection (via immune-gold chips) remains difficult and expensive. An electrochemical immunosensor based on new nanomaterials may provide a solving approach. Herein, an ultrasensitive sandwich electrochemical strategy for PCT detection was developed. Firstly, reduced graphene oxide (rGO)-gold (Au) nano-composite film was used as the immunosensor platform to increase the amount of PCT antibody 1(Ab1) immobilized. Next, single-walled carbon nanohorns (SWCNHs)/hollow Pt chains (HPtCs) complex was firstly utilized to label PCT Ab2 as signal tags. For SWCNHs with few side effects, high surface area and HPtCs with higher specific surface, better catalytic activity, complex synthesized from both may provide more advantages. Moreover, to amplify signal, HPtC catalytic activity with H2O2 was enhanced by horseradish peroxidase (HRP) for dual synergy amplification. The whole results demonstrated that the proposed immunosensor exhibited fast operation, high sensitivity, good reproducibility, acceptable stability and ideal selectivity compared with traditional method. The linear calibration of the immunosensor ranged from 1.00 pg/mL to 2.00 × 10(1)ng/mL with a detection limit of 0.43 pg/mL. Analytical application results revealed that the immunosensor matched with the real concentrations of serum samples. Overall this immunosensor may provide a new alternative strategy for PCT detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app