JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7).

As a subset of the metal-organic frameworks, zeolitic imidazolate frameworks (ZIFs) have potential use in practical separations as a result of flexible yet reliable control over their pore sizes along with their chemical and thermal stabilities. Among many ZIF materials, we explored the effect of thermal treatments on the ZIF-7 structure, known for its promising characteristics toward H2 separations; the pore sizes of ZIF-7 (0.29 nm) are desirable for molecular sieving, favoring H2 (0.289 nm) over CO2 (0.33 nm). Although thermogravimetric analysis indicated that ZIF-7 is thermally stabile up to ~400 °C, the structural transition of ZIF-7 to an intermediate phase (as indicated by X-ray analysis) was observed under air as guest molecules were removed. The transition was further continued at higher temperatures, eventually leading toward the zinc oxide phase. Three types of ZIF-7 with differing shapes and sizes (~100 nm spherical, ~400 nm rhombic-dodecahedral, and ~1300 nm rod-shaped) were employed to elucidate (1) thermal structural transitions while considering kinetically relevant processes and (2) discrepancies in the N2 physisorption and CO2 adsorption isotherms. The largest rod-shaped ZIF-7 particles showed a delayed thermal structural transition toward the stable zinc oxide phase. The CO2 adsorption behaviors of the three ZIF-7s, despite their identical crystal structures, suggested minute differences in the pore structures; in particular, the smaller spherical ZIF-7 particles provided reversible CO2 adsorption isotherms at ~30-75 °C, a typical temperature range of flue gases from coal-fired power plants, in contrast to the larger rhombic-dodecahedral and rod-shaped ZIF-7 particles, which exhibited hysteretic CO2 adsorption/desorption behavior.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app