Observer-based adaptive neural network control for nonlinear stochastic systems with time delay

Qi Zhou, Peng Shi, Shengyuan Xu, Hongyi Li
IEEE Transactions on Neural Networks and Learning Systems 2013, 24 (1): 71-80
This paper considers the problem of observer-based adaptive neural network (NN) control for a class of single-input single-output strict-feedback nonlinear stochastic systems with unknown time delays. Dynamic surface control is used to avoid the so-called explosion of complexity in the backstepping design process. Radial basis function NNs are directly utilized to approximate the unknown and desired control input signals instead of the unknown nonlinear functions. The proposed adaptive NN output feedback controller can guarantee all the signals in the closed-loop system to be mean square semi-globally uniformly ultimately bounded. Simulation results are provided to demonstrate the effectiveness of the proposed methods.


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"