Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Observer-based adaptive neural network control for nonlinear stochastic systems with time delay.

This paper considers the problem of observer-based adaptive neural network (NN) control for a class of single-input single-output strict-feedback nonlinear stochastic systems with unknown time delays. Dynamic surface control is used to avoid the so-called explosion of complexity in the backstepping design process. Radial basis function NNs are directly utilized to approximate the unknown and desired control input signals instead of the unknown nonlinear functions. The proposed adaptive NN output feedback controller can guarantee all the signals in the closed-loop system to be mean square semi-globally uniformly ultimately bounded. Simulation results are provided to demonstrate the effectiveness of the proposed methods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app