JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Different types of carbon nanotube-based anodes to improve microbial fuel cell performance.

The microbial fuel cell (MFC) is an innovative technology for producing electricity directly from biodegradable organic matter using bacteria. Among all the influenceable factors, anode materials play a crucial role in electricity generation. Recently, carbon nanotubes (CNTs) have exhibited promising properties as electrode material due to their unique structural, and physical and chemical properties. In this study, the impacts of CNT types in CNT-based anodes were investigated to determine their effect on both efficiency of wastewater treatment and power generation. The CNTs, namely single-walled CNT with carboxyl group (SWCNT), multi-walled CNT with carboxyl group (MWCNT-COOH) and multi-walled CNT with hydroxyl group (MWCNT-OH) were used to fabricate CNT-based anodes by a filtration method. Overall, MWCNTs provided better results than SWCNTs, especially in the presence of the -OH groups. The highest power and treatment efficiencies in MFC were achieved with an anode made of MWCNT-OH filtered on Poreflon membrane; the open circuit voltage attained was 0.75 V and the maximum power density averaged 167 mW/m(2), which was 130% higher than that obtained with plain carbon cloth. In addition, MWCNT-OH is more cost-effective, further suggesting its potential to replace plain carbon cloth generally used for the MFC anode.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app