JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Associations of fine particulate matter species with mortality in the United States: a multicity time-series analysis.

BACKGROUND: Epidemiological studies have examined the association between PM2.5 and mortality, but uncertainty remains about the seasonal variations in PM2.5-related effects and the relative importance of species.

OBJECTIVES: We estimated the effects of PM2.5 species on mortality and how infiltration rates may modify the association.

METHODS: Using city-season specific Poisson regression, we estimated PM2.5 effects on approximately 4.5 million deaths for all causes, cardiovascular disease (CVD), myocardial infarction (MI), stroke, and respiratory diseases in 75 U.S. cities for 2000-2006. We added interaction terms between PM2.5 and monthly average species-to-PM2.5 proportions of individual species to determine the relative toxicity of each species. We combined results across cities using multivariate meta-regression, and controlled for infiltration.

RESULTS: We estimated a 1.18% (95% CI: 0.93, 1.44%) increase in all-cause mortality, a 1.03% (95% CI: 0.65, 1.41%) increase in CVD, a 1.22% (95% CI: 0.62, 1.82%) increase in MI, a 1.76% (95% CI: 1.01, 2.52%) increase in stroke, and a 1.71% (95% CI: 1.06, 2.35%) increase in respiratory deaths in association with a 10-μg/m3 increase in 2-day averaged PM2.5 concentration. The associations were largest in the spring. Silicon, calcium, and sulfur were associated with more all-cause mortality, whereas sulfur was related to more respiratory deaths. County-level smoking and alcohol were associated with larger estimated PM2.5 effects.

CONCLUSIONS: Our study showed an increased risk of mortality associated with PM2.5, which varied with seasons and species. The results suggest that mass alone might not be sufficient to evaluate the health effects of particles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app