Inverse probability weighting with error-prone covariates

Daniel F McCaffrey, J R Lockwood, Claude M Setodji
Biometrika 2013, 100 (3): 671-680
Inverse probability-weighted estimators are widely used in applications where data are missing due to nonresponse or censoring and in the estimation of causal effects from observational studies. Current estimators rely on ignorability assumptions for response indicators or treatment assignment and outcomes being conditional on observed covariates which are assumed to be measured without error. However, measurement error is common for the variables collected in many applications. For example, in studies of educational interventions, student achievement as measured by standardized tests is almost always used as the key covariate for removing hidden biases, but standardized test scores may have substantial measurement errors. We provide several expressions for a weighting function that can yield a consistent estimator for population means using incomplete data and covariates measured with error. We propose a method to estimate the weighting function from data. The results of a simulation study show that the estimator is consistent and has no bias and small variance.


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"