Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Differential expression of AP-1 proteins in human myometrium after spontaneous term labour onset.

OBJECTIVES: The aims of this study were (i) to determine the localisation of activator protein (AP)-1 family members (cFos, FosB, cJun, JunB and JunD) in human myometrium; and (ii) to determine the effect of human term labour on the expression of AP-1 family of transcription factors in myometrium.

STUDY DESIGN: This localised the AP-1 family members cFos, FosB, cJun, JunB and JunD in human myometrium was performed by immunohistochemistry. The effect of term labour on the expression of these family members at the mRNA and protein level was assessed by qRT-PCR and Western blotting, respectively. The effect of pro-inflammatory stimuli on AP-1 transcriptional activity was assessed using a luciferase assay in primary human myometrial cells.

RESULTS: Immunohistochemical expression of cFos, FosB, cJun, JunB and JunD were all present in human myometrial tissue and displayed cytoplasmic staining. FosB and JunD also displayed nuclear staining. Term labour was associated with an increase in cFos and JunB mRNA and protein expression. On the other hand, JunD mRNA and protein expression was decreased with labour. FosB mRNA was increased with labour, but there was no change at the protein level. There was no change in cJun mRNA or protein expression. AP-1 transcriptional activity was increased in human myometrial cells by the pro-inflammatory cytokine TNF-α. There was, however, no effect of the bacterial products lipopolysaccharide (LPS; TLR4 ligand), iE-DAP (NOD1 ligand), MDP (NOD2 ligand), FSL-1 (TLR2 ligand) or flagellin (TLR5 ligand) on AP-1 transcriptional activity.

CONCLUSION: This study shows that human labour is associated with changes in AP-1 family members. Further studies are required to determine the exact role of the AP-1 family members in myometrium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app