JOURNAL ARTICLE
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Does use of a powered ankle-foot prosthesis restore whole-body angular momentum during walking at different speeds?

BACKGROUND: Whole-body angular momentum (H) influences fall risk, is tightly regulated during walking, and is primarily controlled by muscle force generation. People with transtibial amputations using passive-elastic prostheses typically have greater H compared with nonamputees.

QUESTIONS/PURPOSES: (1) Do people with unilateral transtibial amputations using passive-elastic prostheses have greater sagittal and frontal plane H ranges of motion during walking compared with nonamputees and compared with using powered prostheses? (2) Does use of powered ankle-foot prostheses result in equivalent H ranges in all planes of motion compared with nonamputees during walking as a result of normative prosthetic ankle power generation?

METHODS: Eight patients with a unilateral transtibial amputation and eight nonamputees walked 0.75, 1.00, 1.25, 1.50, and 1.75 m/s while we measured kinematics and ground reaction forces. We calculated H for participants using their passive-elastic prosthesis and a powered ankle-foot prosthesis and for nonamputees at each speed.

RESULTS: Patients using passive-elastic prostheses had 32% to 59% greater sagittal H ranges during the affected leg stance phase compared with nonamputees at 1.00 to 1.75 m/s (p < 0.05). Patients using passive-elastic prostheses had 5% and 9% greater sagittal H ranges compared with using powered prostheses at 1.25 and 1.50 m/s, respectively (p < 0.05). Participants using passive-elastic prostheses had 29% and 17% greater frontal H ranges at 0.75 and 1.50 m/s, respectively, compared with nonamputees (p < 0.05). Surprisingly, patients using powered prostheses had 26% to 50% greater sagittal H ranges during the affected leg stance phase compared with nonamputees at 1.00 to 1.75 m/s (p < 0.05). Patients using powered prostheses also had 26% greater frontal H range compared with nonamputees at 0.75 m/s (p < 0.05).

CONCLUSIONS: People with a transtibial amputation may more effectively regulate H at two specific walking speeds when using powered compared with passive-elastic prostheses.

CLINICAL RELEVANCE: Our results support the hypothesis that an ankle-foot prosthesis capable of providing net positive work during the stance phase of walking reduces sagittal plane H; future studies are needed to validate our biomechanical findings with larger numbers of patients and should determine whether powered prostheses can decrease the risk of falls in patients with a transtibial amputation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app