OPEN IN READ APP
JOURNAL ARTICLE

Does use of a powered ankle-foot prosthesis restore whole-body angular momentum during walking at different speeds?

Susan D'Andrea, Natalie Wilhelm, Anne K Silverman, Alena M Grabowski
Clinical Orthopaedics and related Research 2014, 472 (10): 3044-54
24781926

BACKGROUND: Whole-body angular momentum (H) influences fall risk, is tightly regulated during walking, and is primarily controlled by muscle force generation. People with transtibial amputations using passive-elastic prostheses typically have greater H compared with nonamputees.

QUESTIONS/PURPOSES: (1) Do people with unilateral transtibial amputations using passive-elastic prostheses have greater sagittal and frontal plane H ranges of motion during walking compared with nonamputees and compared with using powered prostheses? (2) Does use of powered ankle-foot prostheses result in equivalent H ranges in all planes of motion compared with nonamputees during walking as a result of normative prosthetic ankle power generation?

METHODS: Eight patients with a unilateral transtibial amputation and eight nonamputees walked 0.75, 1.00, 1.25, 1.50, and 1.75 m/s while we measured kinematics and ground reaction forces. We calculated H for participants using their passive-elastic prosthesis and a powered ankle-foot prosthesis and for nonamputees at each speed.

RESULTS: Patients using passive-elastic prostheses had 32% to 59% greater sagittal H ranges during the affected leg stance phase compared with nonamputees at 1.00 to 1.75 m/s (p < 0.05). Patients using passive-elastic prostheses had 5% and 9% greater sagittal H ranges compared with using powered prostheses at 1.25 and 1.50 m/s, respectively (p < 0.05). Participants using passive-elastic prostheses had 29% and 17% greater frontal H ranges at 0.75 and 1.50 m/s, respectively, compared with nonamputees (p < 0.05). Surprisingly, patients using powered prostheses had 26% to 50% greater sagittal H ranges during the affected leg stance phase compared with nonamputees at 1.00 to 1.75 m/s (p < 0.05). Patients using powered prostheses also had 26% greater frontal H range compared with nonamputees at 0.75 m/s (p < 0.05).

CONCLUSIONS: People with a transtibial amputation may more effectively regulate H at two specific walking speeds when using powered compared with passive-elastic prostheses.

CLINICAL RELEVANCE: Our results support the hypothesis that an ankle-foot prosthesis capable of providing net positive work during the stance phase of walking reduces sagittal plane H; future studies are needed to validate our biomechanical findings with larger numbers of patients and should determine whether powered prostheses can decrease the risk of falls in patients with a transtibial amputation.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Available on the App Store

Available on the Play Store
Remove bar
Read by QxMD icon Read
24781926
×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"