JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Rapid automatic segmentation of the human cerebellum and its lobules (RASCAL)--implementation and application of the patch-based label-fusion technique with a template library to segment the human cerebellum.

Human Brain Mapping 2014 October
Reliable and fast segmentation of the human cerebellum with its complex architecture of lobes and lobules has been a challenge for the past decades. Emerging knowledge of the functional integration of the cerebellum in various sensori-motor and cognitive-behavioral circuits demands new automatic segmentation techniques, with accuracies similar to manual segmentations, but applicable to large subject numbers in a reasonable time frame. This article presents the development and application of a novel pipeline for rapid automatic segmentation of the human cerebellum and its lobules (RASCAL) combining patch-based label-fusion and a template library of manually labeled cerebella of 16 healthy controls from the International Consortium for Brain Mapping (ICBM) database. Leave-one-out experiments revealed a good agreement between manual and automatic segmentations (Dice kappa = 0.82). Intraclass correlation coefficients (ICC) were calculated to test reliability of segmented volumes and were highest (ICC > 0.9) for global measures (total and hemispherical grey and white matter) followed by larger lobules of the posterior lobe (ICC > 0.8). Further we applied the pipeline to all 152 young healthy controls of the ICBM database to look for hemispheric and gender differences. The results demonstrated larger native space volumes in men then women (mean (± SD) total cerebellar volume in women = 217 cm(3) (± 26), men = 259 cm(3) (± 29); P < 0.001). Significant gender-by-hemisphere interaction was only found in stereotaxic space volumes for white matter core (men > women) and anterior lobe volume (women > men). This new method shows great potential for the precise and efficient analysis of the cerebellum in large patient cohorts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app