Journal Article
Review
Add like
Add dislike
Add to saved papers

Biological activity of the e domain of the IGF-1Ec as addressed by synthetic peptides.

Insulin-like growth factor-1 (IGF-1) is a multipotent growth factor involved in the growth, development and regulation of homeostasis in a tissue-specific manner. Alternative splicing, multiple transcription initiation sites and different polyadelynation signals give rise to diverse mRNA isoforms, such as IGF-1Ea, IGF-1Eb and IGF-1Ec transcripts. There is increasing interest in the expression of the IGF-1 isoforms and their potential distinct biological role. IGF-1Ec results from alternative splicing of exons 4-5-6 and its expression is upregulated in various conditions and pathologies. Recent studies have shown that IGF-1Ec is preferentially increased after injury in skeletal muscle during post-infarctal myocardium remodelling and in cancer tissues and cell lines. A synthetic analogue corresponding to the last 24 aa of the E domain of the IGF-1Ec isoform has been used to elucidate its potential biological role. The aim of the present review is to describe and discuss the putative bioactivity of the E domain of the IGF-1Ec isoform.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app