Differential activation of sporamin expression in response to abiotic mechanical wounding and biotic herbivore attack in the sweet potato

SenthilKumar Rajendran, I-Winnie Lin, Mei-Ju Chen, Chien-Yu Chen, Kai-Wun Yeh
BMC Plant Biology 2014, 14: 112

BACKGROUND: Plants respond differently to mechanical wounding and herbivore attack, using distinct pathways for defense. The versatile sweet potato sporamin possesses multiple biological functions in response to stress. However, the regulation of sporamin gene expression that is activated upon mechanical damage or herbivore attack has not been well studied.

RESULTS: Biochemical analysis revealed that different patterns of Reactive oxygen species (ROS) and antioxidant mechanism exist between mechanical wounding (MW) and herbivore attack (HA) in the sweet potato leaf. Using LC-ESI-MS (Liquid chromatography electrospray ionization mass spectrometry analysis), only the endogenous JA (jasmonic acid) level was found to increase dramatically after MW in a time-dependent manner, whereas both endogenous JA and SA (salicylic acid) increase in parallel after HA. Through yeast one-hybrid screening, two transcription factors IbNAC1 (no apical meristem (NAM), Arabidopsis transcription activation factor (ATAF), and cup-shaped cotyledon (CUC)) and IbWRKY1 were isolated, which interact with the sporamin promoter fragment of SWRE (sporamin wounding-responsive element) regulatory sequences. Exogenous application of MeJA (methyl jasmonate), SA and DIECA (diethyldithiocarbamic acid, JAs biosynthesis inhibitor) on sweet potato leaves was employed, and the results revealed that IbNAC1 mediated the expression of sporamin through a JA-dependent signaling pathway upon MW, whereas both IbNAC1 and IbWRKY1 coordinately regulated sporamin expression through JA- and SA-dependent pathways upon HA. Transcriptome analysis identified MYC2/4 and JAZ2/TIFY10A (jasmonate ZIM/tify-domain), the repressor and activator of JA and SA signaling among others, as the genes that play an intermediate role in the JA and SA pathways, and these results were further validated by qRT-PCR (quantitative real-time polymerase chain reaction).

CONCLUSION: This work has improved our understanding of the differential regulatory mechanism of sporamin expression. Our study illustrates that sweet potato sporamin expression is differentially induced upon abiotic MW and biotic HA that involves IbNAC1 and IbWRKY1 and is dependent on the JA and SA signaling pathways. Thus, we established a model to address the plant-wounding response upon physical and biotic damage.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"