Add like
Add dislike
Add to saved papers

Postural threat during walking: effects on energy cost and accompanying gait changes.

BACKGROUND: Balance control during walking has been shown to involve a metabolic cost in healthy subjects, but it is unclear how this cost changes as a function of postural threat. The aim of the present study was to determine the influence of postural threat on the energy cost of walking, as well as on concomitant changes in spatiotemporal gait parameters, muscle activity and perturbation responses. In addition, we examined if and how these effects are dependent on walking speed.

METHODS: Healthy subjects walked on a treadmill under four conditions of varying postural threat. Each condition was performed at 7 walking speeds ranging from 60-140% of preferred speed. Postural threat was induced by applying unexpected sideward pulls to the pelvis and varied experimentally by manipulating the width of the path subjects had to walk on.

RESULTS: Results showed that the energy cost of walking increased by 6-13% in the two conditions with the largest postural threat. This increase in metabolic demand was accompanied by adaptations in spatiotemporal gait parameters and increases in muscle activity, which likely served to arm the participants against a potential loss of balance in the face of the postural threat. Perturbation responses exhibited a slower rate of recovery in high threat conditions, probably reflecting a change in strategy to cope with the imposed constraints. The observed changes occurred independent of changes in walking speed, suggesting that walking speed is not a major determinant influencing gait stability in healthy young adults.

CONCLUSIONS: The current study shows that in healthy adults, increasing postural threat leads to a decrease in gait economy, independent of walking speed. This could be an important factor in the elevated energy costs of pathological gait.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app