COMPARATIVE STUDY
JOURNAL ARTICLE
META-ANALYSIS
REVIEW
Add like
Add dislike
Add to saved papers

Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review.

BACKGROUND: Exercise increases core body temperature (Tc), which is necessary to optimise physiological processes. However, excessive increase in Tc may impair performance and places participants at risk for the development of heat-related illnesses. Cooling is an effective strategy to attenuate the increase in Tc. This meta-analysis compares the effects of cooling before (precooling) and during exercise (percooling) on performance and physiological outcomes.

METHODS: A computerised literature search, citation tracking and hand search were performed up to May 2013. 28 studies met the inclusion criteria, which were trials that examined the effects of cooling strategies on exercise performance in men, while exercise was performed in the heat (>30°C). 20 studies used precooling, while 8 studies used percooling.

RESULTS: The overall effect of precooling and percooling interventions on exercise performance was +6.7±0.9% (effect size (ES)=0.43). We found a comparable effect (p=0.82) of precooling (+5.7±1.0% (ES=0.44)) and percooling (+9.9±1.9% (ES=0.40)) to improve exercise performance. A lower finishing Tc was found in precooling (38.9°C) compared with control condition (39.1°C, p=0.03), while Tc was comparable between conditions in percooling studies. No correlation between Tc and performance was found. We found significant differences between cooling strategies, with a combination of multiple techniques being most effective for precooling (p<0.01) and ice vest for percooling (p=0.02).

CONCLUSIONS: Cooling can significantly improve exercise performance in the heat. We found a comparable ES for precooling and percooling on exercise performance, while the type of cooling technique importantly impacts the effects. Precooling lowered the finishing core temperature, while there was no correlation between Tc and performance.

Full text links

For the best experience, use the Read mobile app

Group 7SearchHeart failure treatmentPapersTopicsCollectionsEffects of Sodium-Glucose Cotransporter 2 Inhibitors for the Treatment of Patients With Heart Failure Importance: Only 1 class of glucose-lowering agents-sodium-glucose cotransporter 2 (SGLT2) inhibitors-has been reported to decrease the risk of cardiovascular events primarily by reducingSeptember 1, 2017: JAMA CardiologyAssociations of albuminuria in patients with chronic heart failure: findings in the ALiskiren Observation of heart Failure Treatment study.CONCLUSIONS: Increased UACR is common in patients with heart failure, including non-diabetics. Urinary albumin creatininineJul, 2011: European Journal of Heart FailureRandomized Controlled TrialEffects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial.Review

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

Read by QxMD is copyright © 2021 QxMD Software Inc. All rights reserved. By using this service, you agree to our terms of use and privacy policy.

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app