EVALUATION STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Right ventricular unloading and respiratory support with a wearable artificial pump-lung in an ovine model.

BACKGROUND: Device availability of mechanical circulatory or respiratory support to the right heart has been limited. The purpose of this study was to investigate the effect of right heart unloading and respiratory support with a wearable integrated artificial pump-lung (APL).

METHODS: The APL device was placed surgically between the right atrium and pulmonary artery in 7 sheep. Anti-coagulation was performed with heparin infusion. The device's ability to unload the right ventricle (RV) was investigated by echocardiograms and right heart catheterization at different bypass flow rates. Hemodynamics and echocardiographic data were evaluated. APL flow and gas transfer rates were also measured at different device speeds.

RESULTS: Hemodynamics remained stable during APL support. There was no significant change in systemic blood pressure and cardiac index. Central venous pressure, RV pressure, RV end-diastolic dimension and RV ejection fraction were significantly decreased when APL device flow rate approached 2 liters/min. Linear regression showed significant correlative trends between the hemodynamic and cardiac indices and device speed. The oxygen transfer rate increased with device speed. The oxygen saturation from the APL outlet was fully saturated (>95%) during support. The impact of APL support on blood elements (plasma free hemoglobin and platelet activation) was minimal.

CONCLUSIONS: APL device support significantly unloaded the RV with increasing device speed. The device also provided stable hemodynamics and respiratory support in terms of blood flow and oxygen transfer. The right heart unloading performance of this wearable device needs to be evaluated further in an animal model of right heart failure with long-term support.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app