Add like
Add dislike
Add to saved papers

A novel tree-based procedure for deciphering the genomic spectrum of clinical disease entities.

BACKGROUND: Dissecting the genomic spectrum of clinical disease entities is a challenging task. Recursive partitioning (or classification trees) methods provide powerful tools for exploring complex interplay among genomic factors, with respect to a main factor, that can reveal hidden genomic patterns. To take confounding variables into account, the partially linear tree-based regression (PLTR) model has been recently published. It combines regression models and tree-based methodology. It is however computationally burdensome and not well suited for situations for which a large number of exploratory variables is expected.

METHODS: We developed a novel procedure that represents an alternative to the original PLTR procedure, and considered different selection criteria. A simulation study with different scenarios has been performed to compare the performances of the proposed procedure to the original PLTR strategy.

RESULTS: The proposed procedure with a Bayesian Information Criterion (BIC) achieved good performances to detect the hidden structure as compared to the original procedure. The novel procedure was used for analyzing patterns of copy-number alterations in lung adenocarcinomas, with respect to Kirsten Rat Sarcoma Viral Oncogene Homolog gene (KRAS) mutation status, while controlling for a cohort effect. Results highlight two subgroups of pure or nearly pure wild-type KRAS tumors with particular copy-number alteration patterns.

CONCLUSIONS: The proposed procedure with a BIC criterion represents a powerful and practical alternative to the original procedure. Our procedure performs well in a general framework and is simple to implement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app