JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Molecular targeting radiotherapy with cyclo-RGDFK(C) peptides conjugated to 177Lu-labeled gold nanoparticles in tumor-bearing mice.

Peptides based on the cyclic Arg-Gly-Asp (RGD) sequence have been designed to antagonize the function of alpha(v)beta(3) integrin, thereby inhibiting angiogenesis. The conjugation of RGD peptides to radiolabeled gold nanoparticles (AuNP) produces biocompatible and stable multimeric systems with target-specific molecular recognition. The aim of this research was to evaluate the therapeutic response of 177Lu-AuNP-RGD in athymic mice bearing alpha(v)beta(3)-integrin-positive C6 gliomas and compare it with that of 177Lu-AuNP or 177Lu-RGD. The radiation absorbed dose, metabolic activity (SUV, [18F]fluor-deoxy-glucose-microPET/CT), histological characteristics and VEGF gene expression (by real-time polymerase chain reaction) in tumor tissues following treatment with 177Lu-AuNP-RGD, 177Lu-AuNP or 177Lu-RGD were assessed. Of the radiopharmaceuticals evaluated, 1177Lu-AuNP-RGD delivered the highest tumor radiation absorbed dose (63.8 +/- 7.9 Gy). These results correlated with the observed therapeutic response, in which 177Lu-AuNP-RGD significantly (p < 0.05) induced less tumor progression, less tumor metabolic activity, fewer intratumoral vessels and less VEGF gene expression than the other radiopharmaceuticals, a consequence of high tumor retention and a combination of molecular targeting therapy (multimeric RGD system) and radiotherapy (177Lu). There was a low uptake in non-target organs and no induction of renal toxicity. 177Lu-labeled gold nanoparticles conjugated to cyclo-RGDfK(C) demonstrate properties suitable for use as an agent for molecular targeting radiotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app